Sains Malaysiana 52(11)(2023): 3325-3342
http://doi.org/10.17576/jsm-2023-5211-22
Elucidating the
Binding Affinity of Meso Porphyrin Derivatives with Bcl-2 through
Synthesis and Molecular Docking Analysis
(Elusidasi Kekuatan Ikatan Terbitan Meso Porfirin melalui Analisis Sintesis dan Pendokan Molekul)
YASOTHAA RAMAIYAH1,2, MOHD BAKRI BAKAR3 &
MUNTAZ ABU BAKAR1,*
1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2National Pharmaceutical Regulatory
Agency, Ministry of Health Malaysia,
46200 Petaling Jaya, Selangor, Malaysia
3Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia,
81310 UTM Johor Bahru,
Johor, Malaysia
Received:
14 September 2023/Accepted: 4 December 2023
Abstract
Reversing
multi-drug resistance in a clinical setting remains a formidable issue to date.
Porphyrin has high efficiency to conjugate with chemotherapy drugs and
effectively deliver within the nucleus of cancer cells which helps in lowering
side effect to normal cells. As compared to naturally occurring
beta-substituted porphyrins, synthetic meso-substituted
porphyrins have numerous benefits. An extensive variety of substituents have
been developed with porphyrins. There are eight new porphyrin derivatives synthesised
in this research compounds 14-21 which differ from one size to
another using Sonogashira and Suzuki coupling
techniques. Sonogashira coupling method undergoes a
reaction between alkyne terminal sp hybridized carbon
and vinyl halide’s sp2 carbon in the presence of a Palladium
catalyst. Furthermore, Suzuki coupling method has been an effective method in
conjugation of aryl halides and borylated porphyrins.
The synthesized new compounds were characterized by ultra-violet spectroscopy (UV-Vis), high resolution mass
spectrometer (HRMS) and nuclear magnetic resonance (NMR) to confirm successful
formation of all new compounds. The
docking analysis was performed for compound 14-21. Compounds 16 and 18 showed the greater binding mode at the Bcl-2 protein pocket regards
free or metal substituted porphyrin with longer linker chain and less bulky
compared to compounds 17 and 19. This study could
discover the structure of porphyrin that affects accumulation in cancer cells
that potentially transmissible to target tumour.
Keywords: Bcl-2 protein; molecular docking; porphyrin; Sonogashira coupling; Suzuki coupling
Abstrak
Pemulihan rintangan pelbagai ubat dalam persekitaran klinikal kekal sebagai isu yang sangat kritikal setakat ini. Porfirin mempunyai kecekapan tinggi untuk bergabung dengan ubat kemoterapi dan berkesan menyampaikan ubat dalam nukleus sel kanser dan ini membantu mengurangkan kesan sampingan terhadap sel normal. Terbitan porfirin boleh diaplikasikan dalam pelbagai bidang bergantung kepada penukarganti yang diperkenalkan kepada porfirin. Berbanding dengan beta-porfirin yang wujud secara semula jadi, porfirin yang ditukarganti pada kedudukan meso secara sintetik mempunyai banyak faedah. Pelbagai jenis penukarganti porfirin telah dibangunkan. Terdapat lapan sebatian porfirin baru iaitu sebatian 14-21 yang disintesis dalam penyelidikan ini menggunakan tindak balas penggandingan Sonogashira dan Suzuki. Penggandingan Sonogashira adalah tindak balas antara karbon terhibrid terminal alkuna sp dan karbon vinil halida sp2. Manakala, tindak balas Suzuki adalah teknik konjugasi aril halida dan porfirin terborilasi. Sebatian baharu yang disintesis telah dicirikan dengan menggunakan kaedah ultra-lembayung boleh nampak (ULBN), spektrometer jisim resolusi tinggi dan resonans magnet nuklear (RMN). Analisis dok telah dilakukan bagi sebatian 14-21. Sebatian 16 dan 18 menunjukkan mod pengikatan yang lebih besar pada poket protein Bcl-2 iaitu sama ada bebas atau porfirin yang digantikan logam dengan rantai penghubung yang lebih panjang dan kurang besar berbanding kompaun 17 dan 19. Kajian ini menunjukkan bagaimana struktur porfirin mempengaruhi penumpukan dalam sel kanser yang berpotensi untuk dihantar kepada tumor sasaran.
Kata kunci: Dok molekul; penggandingan Sonogashira; penggandingan Suzuki; porfirin; Protein Bcl-2
REFERENCES
Allouche, A. 2012. Software news and updates gabedit - A graphical user interface for computational
chemistry softwares. Journal of Computational
Chemistry 32: 174-182.
Bakar, M.A., Sergeeva, N.N., Juillard, T. & Senge,
M.O. 2011. Synthesis of ferrocenyl porphyrins via suzuki coupling and their photophysical properties. Organometallics 30(11): 3225-3228.
Barillé-Nion, S., Lohard, S. & Juin, P.P. 2020. Targeting of bcl-2 family members during
anticancer treatment: A necessary compromise between individual cell and ecosystemic responses? Biomolecules 10(8): 1-24.
Boscencu, R., Radulea, N., Manda,
G., Machado, I.F., Socoteanu, R.P., Lupuliasa, D., Burloiu, A.M.,
Mihai, D.P. & Ferreira, L.F.V. 2023. Porphyrin macrocycles: General
properties and theranostic potential. Molecules 28(3): 1149.
Dahms, K. & Senge, M.O. 2008. Triptycene as a rigid, 120° orienting, three-pronged, covalent scaffold for porphyrin arrays. Tetrahedron Letters 49(37): 5397-5399.
Eom, Y.H., Kim, H.S., Lee, A., Song, B.J. & Chae, B.J. 2016. BCL2 as a subtype-specific prognostic
marker for breast cancer. Journal of Breast Cancer 19(3): 252-260.
Fathi, P. & Pan, Di. 2020. Current trends in pyrrole
and porphyrin-derived nanoscale materials for biomedical applications. Nanomedicine 15(25): 2493-2515.
Feng, X. & Senge, M.O.
2001. An efficient synthesis of highly functionalized asymmetric porphyrins
with organolithium reagents. Journal of the
Chemical Society. Perkin Transactions 1(9): 1030-1038.
Gasteiger, J. & Marsili, M. 1980.
Iterative partial equalization of orbital electronegativity-a rapid access to
atomic charges. Tetrahedron 36(22): 3219-3228.
Giovannetti, R. 2012. The use of spectrophotometry UV-Vis for the
study of porphyrins. In Macro to Nano Spectroscopy, edited by Uddin, J. InTech. doi:10.5772/2503
Gujarathi, P. 2020. Review on synthetic advances in porphyrins
and metalloporphyrins. International Journal of
Chemical Studies 8(3): 23-32.
Han, M. & Zhang, J.Z.H. 2010. Class I
phospho-inositide-3-kinases (PI3Ks) isoform-specific
inhibition study by the combination of docking and molecular dynamics
simulation. Journal of Chemical Information and Modeling 50(1): 136-145.
Hartnell, R.D., Edwards, A.J. & Arnold, D.P. 2002.
Peripherally-metallated porphyrins: meso-η1-porphyrinyl-platinum(II)
complexes of 5,15-diaryl- and 5,10,15- triarylporphyrins. Journal of Porphyrins and Phthalocyanines 6(11): 695-707.
Ion, R-M. 2017. Porphyrins and phthalocyanines:
Photosensitizers and photocatalysts. In Phthalocyanines and Some Current Applications, edited
by Yilmaz, Y. InTech. doi:10.5772/intechopen.68654
Kale, J., Osterlund, E.J.
& Andrews, D.W. 2018. BCL-2 family proteins: Changing partners in the dance
towards death. Cell Death and Differentiation 25(1): 65-80.
Locos, O.B. & Arnold, D.P. 2006. The Heck reaction
for porphyrin functionalisation: Synthesis of meso-alkenyl monoporphyrins and palladium-catalysed formation of
unprecedented meso-β ethene-linked diporphyrins. Organic and Biomolecular Chemistry 4(5): 902-916.
Marck, G., Villiger, A.
& Buchecker, R. 1994. Aryl couplings with
heterogeneous palladium catalysts. Tetrahedron Letters 33(20):
3277-3280.
Mohd Radzuan, N.H., Norazmi, N.A.Z., Ali, A.H., Abu Bakar, M., Agustar, H.K., Mohd Abd Razak, M.R. & Hassan,
N.I. 2021. Sintesis, aktiviti antiplasmodium dan kesitotoksikan secara in vitro sebatian porfirin logam ke atas strain Plasmodium falciparum K1. Sains Malaysiana 50(10): 2945-2956.
Mohjer, F., Mofatehnia, P., Rangraz, Y. & Heravi, M.M.
2021. Pd-free, Sonogashira cross-coupling reaction. An update. Journal of Organometallic Chemistry 936: 121712.
Monvall, E. 1976. Statsbudgeten: de stora reformerna gäller arbetslivet. Tidskrift for Sveriges sjukskoterskor 43(2): 54-58.
Morris, J.L., Gillet, G., Prudent, J. & Popgeorgiev, N. 2021. Bcl-2 family of proteins in the control of mitochondrial calcium signalling: An old chap with new roles. International Journal of Molecular Sciences 22(7): 3730.
Nakano, A., Yasuda, Y., Yamazaki, T., Akimoto, S., Yamazaki,
I., Miyasaka, H., Itaya,
A., Murakami, M. & Osuka, A. 2001. Intramolecular
energy transfer in S1- and S2-states of porphyrin
trimers. Journal of Physical Chemistry A 105(20): 4822-4833.
Nowak-Krol, A., Plamont, R., Canard, G., Edzang,
J.A., Gryko, T., Balaban,
T.S., Nowak-krol, A., Plamont,
R., Canard, G., Edzang, J.A., Gryko,
D.T., Nowak-król, A., Plamont,
R., Canard, G. & Edzang, A. 2020. An efficient
synthesis of porphyrins with different meso substituents that avoids scrambling in aqueous media. Chemistry 21(4):
1488-1498.
Park, J.M., Hong, K.I., Lee, H. & Jang, W.D. 2021.
Bioinspired applications of porphyrin derivatives. Accounts of Chemical
Research 54(9): 2249-2260.
Pathak, P., Zarandi, M.A.,
Zhou, X. & Jayawickramarajah, J. 2021. Synthesis
and applications of porphyrin-biomacromolecule conjugates. Frontiers in Chemistry 9(November): 1-30.
Phan, A.T., Kuryavyi, V., Gaw, H.Y. & Patel, D.J. 2005. Small-molecule
interaction with a five-guanine-tract g-quadruplex structure from the human MYC promoter. Nature Chemical Biology 1(3): 167-173.
Radzuan, N.H.M., Malek, N.H.A., Ngatiman, M.F., Xin, T.K., Bakar, M.B., Hassan, N.I. &
Bakar, M.A. 2018. Synthesis and X-ray single crystal study of 5-(4,4,5,5 – tetramethyl – 1,3,2 – dioxoborolane)
– 10,20 – diphenylporphyrin. Sains Malaysiana 47(9): 2083-2090.
Rathi, P.C., Ludlow, R.F. & Verdonk,
M.L. 2020. Practical high-quality electrostatic potential surfaces for drug
discovery using a graph-convolutional deep neural network. Journal of
Medicinal Chemistry 63(16): 8778-8790.
Ryan, A., Gehrold, A., Perusitti, R., Pintea, M., Fazekas, M., Locos, O.B., Blaikie,
F. & Senge, M.O. 2011. Porphyrin dimers and
arrays. European Journal of Organic Chemistry 29: 5817-5844.
Saini, G., Dalal, V.,
Savita, B.K., Sharma, N., Kumar, P. & Sharma, A.K. 2019. Molecular docking
and dynamic approach to virtual screen inhibitors against Esbp of Candidatus Liberibacter asiaticus. Journal of Molecular Graphics and
Modelling 92: 329-340.
Senge, M.O. & Feng, X. 2000. Regioselective reaction of 5,15-disubstituted porphyrins with organolithium reagents - Synthetic access to 5,10,15-trisubstituted porphyrins and directly meso-meso-linked bisporphyrins. Journal of the Chemical Society, Perkin
Transactions 1(21): 3615-3621.
Shanmugathasan, S., Johnson, C.K., Edwards, C., Matthews,
E.K., Dolphin, D. & Boyle, R.W. 2000. Regioselective halogenation and palladium-catalysed couplings on 5,15-diphenylporphyrin. Journal
of Porphyrins and Phthalocyanines 4(3): 228-232.
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof,
G., Mark, A.E. & Berendsen, H.J.C. 2005. GROMACS:
Fast, flexible, and free. Journal of Computational Chemistry 26(16):
1701-1718.
Varnado Jr., C.D. & Bielawski,
C.W. 2012. 5.08 - Condensation polymers via metal-Catalyzed coupling reactions. Polymer Science: A
Comprehensive Reference 5: 175-194.
Yin, L. & Liebscher, J.
2007. Carbon-carbon coupling reactions catalyzed by
heterogeneous palladium catalysts. Chemical Reviews 107(1): 133-173.
Zheng, W., Shan, N., Yu, L. & Wang, X. 2008. UV-visible,
fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes and Pigments 77(1): 153-157.
*Corresponding author;
email: muntaz@ukm.edu.my